
Sandia National Laboratories is a multimission laboratory managed and operated by National
Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell

International Inc. for the U.S. Department of Energy’s National Nuclear Security
Administration under contract DE-NA0003525. SAND20XX-XXXX P

P R E S E N T E D B Y

Fugaku and A64FX
Update

S I H A M M O N D, M AT T H E W C U R RY, K E V I N
DAV I S , V I N H Q UA N G DA N G , O KSA N A
G U BA , RO B H O E KST R A , J I M L A RO S , K E V I N
P E D R E T T I , DAV I D P O L I A KO F F, S I VA
R A JA M A N I C K A M , C H R I ST I A N T ROT T, LU C
V E RG I AT- B E RG E R A N D A N D R E W YO U N G E

APRIL 2021

Unclassified Unlimited Release

INTRODUCTION

o Been a busy few months with our A64FX/Fugaku enablement work

2

Improving CMake to support the Fujitsu compiler

First builds of Kokkos and extending Kokkos SIMD to support A64FX SVE operations

First builds of Trilinos to support NALU-CFD (Sandia CFD application)

Developing ATSE Software Stack for A64FX

Containers for ATSE on A64FX Nodes (using podman)

Supercontainers scaling study on Fugaku (ECP, in progress)

Thank you to RIKEN for the collaboration and support

LAMMPS and SPARTA Runs in coming year (in progress)

INOUYE A64FX TESTBED

o Inouye A64FX testbed is part of the ASC Advanced
Architecture Testbed project at Sandia

◦ Open to researchers across the NNSA labs (and some external
partners)

o Provides Fujitsu, Arm and GCC compiler toolchains
◦ Still working on installing the Cray/HPE compiler toolchain

locally

o Integrated into Sandia’s continuous integration build and
test environment

◦ Critical for Trilinos, Kokkos and several application ports to check
code changes don’t break compatibility

◦ Runs sequence of tests overnight and throughout the day

o Helped to prepare our codes for Fugaku and to support
SVE and ATSE development activities

3

CMAKE ISSUES WITH FUJITSU A64FX COMPILER

o Early experimentation with Sandia’s A64FX Inouye
platform showed some issues with correct
detection of Fujitsu compiler when using Cmake

◦ Changes detection of correct C++ flags and OpenMP
◦ Problematic for Trilinos and Kokkos (without

workarounds)

o Engaged with Chuck Atkins at KitWare to fix this
issue

◦ Used Sandia’s Inouye testbed to develop changes/fixes
◦ https://gitlab.kitware.com/chuck.atkins/cmake/-

/tree/fujitsu-compiler-support

o Will be integrated into a future CMake release

4

https://cmake.org/

https://gitlab.kitware.com/chuck.atkins/cmake/-/tree/fujitsu-compiler-support
https://gitlab.kitware.com/chuck.atkins/cmake/-/tree/fujitsu-compiler-support
https://gitlab.kitware.com/chuck.atkins/cmake/-/tree/fujitsu-compiler-support

KOKKOS CORE SUPPORT FOR A64FX

o Added Fujitsu compiler as a supported compiler
Kokkos version 3.3

◦ Challenging due to CMake and compiler detection
issues (now fixed)

o Added sve-vector-bits flag (for GCC) in Kokkos
version 3.4

◦ Improves performance in a number of our internal
micro-benchmarks and reduces code sequence
length

o Added support for A64FX SVE in the Kokkos SIMD
library

◦ Clang and GCC support ”vector_size” attribute
◦ Fujitsu compiler utilizes “omp simd”
◦ Significant improvement over using Neon instructions

5

12

32.1 32

38.3

4

25.6

6.7

14

0

5

10

15

20

25

30

35

40

45

SKX Intel AVX512 A64FX GCC Neon A64FX GCC SVE A64FX armclang++
SVE

Ti
m

e
in

 m
s

Kokkos Tutorial Exercise “SIMD”

Scalar Vector

(Lower is
better)

KOKKOS KERNELS - ADELUS DENSE LU SOLVER

o ADELUS – performance portable dense LU solver for next-
generation distributed-memory HPC platforms

◦ Uses partial pivoting LU factorization for double real/complex
dense linear systems using MPI

◦ Leverages Kokkos and Kokkos Kernels for performance
portability

o Key requirement in each MPI process is the use of BLAS
functionalities for local matrices (e.g. GEMM for updating
the matrix)

o Preliminary evaluated multi-threaded GEMM on a single
node

o Comparisons:
◦ Lassen – ESSL 6.2.1 on a 44-core POWER9 CPU (GCC 8.3.1)
◦ Fugaku - ArmPL 20.1 on a 48-core A64FX (GCC 10.2)
◦ Fugaku – SSL2 on a 48-core A64FX CPU (FCC 4.5.0)

6

A

B

C

Mx
K

KxN

MxN
M=N
K=block_size parameter used in delay-updating

Availability: https://github.com/trilinos/Trilinos/tree/master/packages/adelus

https://github.com/trilinos/Trilinos/tree/master/packages/adelus
https://github.com/trilinos/Trilinos/tree/master/packages/adelus

ADELUS – DGEMM PERFORMANCE COMPARISON

o K is chose similarly to typical
block sizes in ADELUS (K = {64,
128, 256, 512})

o M(=N) varied: 2, 4, 8, 16, ..
16384, 32768, 65536

◦ ArmPL and SSL2 cannot handle
M=N=65536 due to 32GB memory
limit on Fugaku

o Both ArmPL and SSL2
outperform ESSL with double
precision for large matrix sizes

o SSL2 provides best performance
among the three libraries
benchmarked

7

ADELUS – ZGEMM PERFORMANCE COMPARISON

o K is chosen similarly to typical
block sizes in ADELUS (K = {64,
128, 256, 512})

o M(=N) varied: 2, 4, 8, 16, ..
16384, 32768, 65536

◦ ArmPL and SSL2 cannot handle
M=N=65536 due to 32GB memory
limit on Fugaku

o Both ArmPL does not perform
well for complex double
precision benchmarks

o SSL2 again provides the best
performance among the three
libraries benchmarked

8

TRILINOS BUILDS ON A64FX

o Early testing of Trilinos builds on A64FX are now
complete

◦ Using configurations for NALU-CFD (similar to NALU-
ExaWind, but optimized for NNSA use cases)

◦ Builds full solver stack with multiple packages

o Builds with Kokkos using OpenMP backend
◦ GCC, Arm and initial builds with Fujitsu compiler
◦ Several challenges with the Fujitsu compiler (test failures)
◦ Utilizes Kokkos A64FX configuration parameters to

generate build configuration

o Regular continuous integration testing for main
components at Sandia

◦ Helps to reduce bugs

9

https://trilinos.github.io/

ATSE: ADVANCED TRI-LAB SOFTWARE ENVIRONMENT

10

• ATSE is a collaboration with HPE, OpenHPC, and ARM
• Many pieces to the software stack puzzle
• HPE’s HPC Software Stack

• HPE Cluster Manager
• HPE MPI (+ XPMEM)

• Arm
• Arm HPC Compilers
• Arm Math Libraries
• Arm Allinea Tools

• Open source tools and libs
• Slurm, OpenMPI, TPL stack, etc.
• OpenHPC and Spack versions

• Mellanox-OFED & HPC-X
• RedHat 7.x for aarch64 – TOSS

H
P

C
M

Tri-Lab Operating System Stack (TOSS)

TOSS Runtime Libraries Lustre
Client

MOFED

MOFED
Userspace

BMC

I/O
 L

ib
ra

rie
s

O
pe

n
S

ou
rc

e
Li

br
ar

ie
s

M
at

h
Li

br
ar

ie
s

G
N

U
 C

om
pi

le
r

To
ol

ch
ai

n

C
on

ta
in

er
 R

un
tim

es

System
Libs

A
rm

 C
om

pi
le

rs
 &

P

er
f T

oo
lc

ha
in

D
eb

ug
ge

rs

S
lu

rm

In
fra

st
ru

ct
ur

e
To

ol
s

O
pe

nM
P

I

H
P

E
 M

P
I

Sysadmin
Tools

ATSE Programming Environment

Math Routines

UCX

NNSA Application Suite

S
an

di
a

H
P

E
LL

N
L

M
LN

X
A

rm
S

cM
D

O
S

S

Legend

AT
S

E

Container

App

ATSE CONTAINER USE CASES

11

o Test new releases prior to roll out (Sysadmins)
◦ Containers available for ATSE 1.2.0, 1.2.1, 1.2.2, 1.2.3, 1.2.4, and 1.2.5 (current)
◦ Test new stack at scale against real apps, identify issues early

o Full-stack rewind and fast forward (End-users and Sysadmins)
◦ Debug issues
◦ Try out newer software ahead of roll out

o Off-platform Build Environment
◦ Replicate a near exact environment that users can run elsewhere, saving platform cycles
◦ Piloting now at Sandia for Sierra code suite, using the Astra container for off-platform build and test

o Consistent Look and Feel Across HPC Platforms
◦ ATSE container available for Arm and x86_64 (new); creating optimized A64FX container for SNL Inouye testbed
◦ Common set of TPLs optimized for the target environment (e.g., compilers and MPI)

ATSE CONTAINER PODMAN AND SINGULARITY EXAMPLES

12

Podman Example
Login and pull an atse container image from the upstream container registry
$ podman pull containers.sandia.gov/atse/atse-container/atse-arm-openmpi4-astra:1.2.5

Run an interactive shell
$ podman run -ti --rm -v /home/${USER}:/home/${USER} \

containers.sandia.gov/atse/atse-container/atse-arm-openmpi4-astra:1.2.5

Singularity Example
Import an atse container image and flatten to a flattened singularity image file
$ singularity build atse-1.2.5.simg \

docker://containers.sandia.gov/atse/atse-container/atse-arm-openmpi4-astra:1.2.5

Run an interactive shell
$ singularity shell atse-1.2.5.simg

PLANNED SUPERCONTAINER SCALING STUDIES

o Interested in new configurations for Singularity and Charliecloud container runtimes
◦ Configurations could have significant impact on performance at extreme scale
◦ Newer modifications & configs untested beyond 2000 nodes

o Need to investigate container runtime configurations at scale = Fugaku
◦ Initial testing with Inouye A64FX system at Sandia
◦ Once configurations validated on Inouye, reproduce on Fugaku
◦ Leverage ATSE when possible for builds

o Evaluate overhead of Singularity Image Format (SIF) vs “sandbox” images at scale

o Evaluate overhead of container startup via SUID vs user namespaces at scale
◦ May require administrative help
◦ Hope to leverage existing Singularity for Fugaku via Pacific Teck & Sylabs

o Planned usage of containerized HPCG and other open mini-apps

13More info: https://www.exascaleproject.org/accelerating-the-adoption-of-container-technologies-for-exascale-computing/

PLANS FOR THE COMING YEAR

o Plans to study large-scale runs of LAMMPS and
SPARTA on Fugaku

◦ Utilizes Kokkos improvements for performance
◦ Builds in local testing using Inouye – basic initial runs

are looking good

o Teams have started to identify the
problems/inputs for these runs

14

https://lammps.sandia.gov

https://sparta.sandia.gov

